翻訳と辞書
Words near each other
・ Paraethria
・ Paraethria angustipennis
・ Paraethria flavosignata
・ Paraethria mapiria
・ Paraethria triseriata
・ Paraetisus
・ Paraetmopterus
・ Paraeuphranta
・ Paraeutrichopus
・ Paraf
・ Paraf, Iran
・ Paraf-e Bala
・ Paraf-e Pain
・ Parafabricia mazzellae
・ Parafacial
Parafactorial local ring
・ Parafaith Universe
・ ParaFAL
・ Parafaujasia
・ Parafaveoloolithus
・ Parafestuca
・ Paraffection
・ Paraffin
・ Paraffin (song)
・ Paraffin microactuator
・ Paraffin oxidation
・ Paraffin Safety Association of Southern Africa
・ Paraffin wax
・ Parafianka
・ Parafield


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Parafactorial local ring : ウィキペディア英語版
Parafactorial local ring
In algebraic geometry, a Noetherian local ring ''R'' is called parafactorial if it has depth at least 2 and the Picard group Pic(Spec(''R'') − ''m'') of its spectrum with the closed point ''m'' removed is trivial.
More generally, a scheme ''X'' is called parafactorial along a closed subset ''Z'' if the subset ''Z'' is "too small" for invertible sheaves to detect; more precisely if for every open set ''V'' the map from ''P''(''V'') to ''P''(''V'' ∩ ''U'') is an equivalence of categories, where ''U'' = ''X'' – ''Z'' and ''P''(''V'') is the category of invertible sheaves on ''V''. A Noetherian local ring is parafactorial if and only if its spectrum is parafactorial along its closed point.
Parafactorial local rings were introduced by
==Examples==

*Every Noetherian local ring of dimension at least 2 that is factorial is parafactorial. However local rings of dimension at most 1 are not parafactorial, even if they are factorial.
*Every Noetherian complete intersection local ring of dimension at least 4 is parafactorial.
*For a locally Noetherian scheme, a closed subset is parafactorial if the local ring at every point of the subset is parafactorial. For a locally Noetherian regular scheme, the closed parafactorial subsets are those of codimension at least 2.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Parafactorial local ring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.